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Abstract In this paper, a spectral scheme based on shifted second kind Chebyshev wavelets
collocation method (S2CWCM) is introduced and used for solving systems of integro-
differential equations. The main idea for obtaining spectral numerical solutions of these
equations is essentially developed by reducing the linear or nonlinear equations with their
initial conditions to a system of linear or nonlinear algebraic equations in the unknown
expansion coefficients. Convergence analysis and some illustrative examples included, to
demonstrate the validity and the applicability of the method. Numerical results obtained are
compared favorably with the analytical known solutions.
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Introduction

Spectral methods are one of the principal methods of discretization for the numerical solution
of differential equations. The main advantage of these methods lies in their accuracy for a
given number of unknowns (see, for example [1,19,20]). For smooth problems in simple
geometries, they offer exponential rates of convergence/spectral accuracy. The three most
widely used spectral versions are the Galerkin, collocation, and Tau methods. Collocation
methods have become increasingly popular for solving differential equations, also they are
very useful in providing highly accurate solutions to nonlinear differential equations (see,
for example [8,9]).

The subject of wavelets has recently drawn a great deal of attention from mathemati-
cal scientists in various disciplines. It is creating a common link between mathematicians,
physicists, and electrical engineers. Wavelets theory is a relatively new and an emerging area
in mathematical research. It has been applied to a wide range of engineering disciplines;
particularly, wavelets are very successfully used in signal analysis for wave form representa-
tion and segmentations, time frequency analysis and fast algorithms for easy implementation.
Wavelets permit the accurate representation of a variety of functions and operators.Moreover,
wavelets establish a connection with fast numerical algorithms (see [6,15]).

The subject of nonlinear differential equations is a well established part of mathematics
and its systematic development goes back to the early days of the development of calculus.
Many recent advances in mathematics, paralleled by a renewed and flourishing interaction
between mathematics, the sciences, and engineering, have again shown that many phenom-
ena in applied sciences, modelled by differential equations will yield some mathematical
explanation of these phenomena [7,16,21].

Chebyshev wavelets have been developed in [13] to solve the fractional order differential
equations. In [17,18], a cosine and sine (CAS) wavelets operational matrix of fractional order
integration have been derived and used to solve integro-differential equations of fractional
order.

One approach for solving differential equations is based on converting the differential
equations into integral equations through integration, approximating various signals involved
in the equation by truncated orthogonal series and using the operational matrix of integration,
to eliminate the integral operations.

Special attentions have been given to applications of block pulse functions [5], Legendre
polynomials [4], Chebyshev polynomials [11], Haar wavelets [10], Legendre wavelets [12].

The main aim of this paper is to develop a new spectral algorithm for solving systems of
integro-differential equations based on shifted second kind Chebyshev wavelets. The method
reduces the systems of integro-differential equations with initial conditions to a system of
algebraic equations in the unknown expansion coefficients. Large systems of algebraic equa-
tions may lead to greater computational complexity and large storage requirements. However
the second kind Chebyshev wavelets is structurally sparse, this reduces drasticaly the com-
putational complexity of solving the resulting algebraic system.

The structure of the paper is as follows. In “Some Properties of Second Kind Chebyshev
Polynomials and their Shifted Forms” section, we give some relevant properties of second
kind Chebyshev polynomials and their shifted forms. In “Shifted Second Kind Chebyshev
Wavelets” section, we develop a new shifted second kind Chebyshev wavelets colloca-
tion methods, also we ascertain the convergence analysis of the proposed scheme. As an
application of S2CWCM, numerical solutions of second-order linear and nonlinear two-
point boundary value problems are implemented and presented in “Solution of Systems of
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Integro-Differential Equations” section. In “Numerical Results and Discussions” section,
some numerical examples are presented to show the efficiency and the applicability of the
presented algorithm. Some concluding remarks are given in “Concluding Remarks” sec-
tion.

Some Properties of Second Kind Chebyshev Polynomials and their Shifted
Forms

In the present section, we discuss some relevant properties of the second kind Chebyshev
polynomials and their shifted forms.

Second Kind Chebyshev Polynomials

It is well known that the second kind Chebyshev polynomials are defined on [−1, 1] by

Un(x) = sin(n + 1) θ

sin θ
, x = cos θ, θ in [0, π],

These polynomials are orthogonal on [−1, 1], i.e.,
1∫

−1

√
1 − x2 Um(x)Un(x) dx =

⎧⎪⎨
⎪⎩
0, m �= n,

π

2
, m = n.

(1)

The following properties of second kind Chebyshev polynomials (see, for instance, [14]) are
of fundamental importance in the sequel. They are eigenfunctions of the following singular
Sturm–Liouville equation

(1 − x2) D2 φk(x) − 3x D φk(x) + k(k + 2) φk(x) = 0,

where D ≡ d

dx
and may be generated by using the recurrence relation

Uk+1(x) = 2x Uk(x) −Uk−1(x), k = 1, 2, 3, . . . ,

starting from U0(x) = 1 and U1(x) = 2x, or from Rodrigues formula

Un(x) = (−2)n (n + 1)!
(2n + 1)!√1 − x2

Dn
[
(1 − x2)n+ 1

2

]
.

The following theorem is needed hereafter.

Theorem 1 [14] The first derivative of second kind Chebyshev polynomials is given by

DUn(x) = 2
n−1∑
k=0

(k+n) odd

(k + 1)Uk(x). (2)

Shifted Second Kind Chebyshev Polynomials

The shifted secondkindChebyshevpolynomials are definedon [0, 1]byU∗
n (x) = Un(2x−1).

All results of second kind Chebyshev polynomials can be easily transformed to give the
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corresponding results for their shifted forms. The orthogonality relation with respect to the
weight function

√
x − x2 is given by

∫ 1

0

√
x − x2U∗

n (x)U∗
m(x) dx =

⎧⎪⎨
⎪⎩
0, m �= n,

π

8
, m = n.

The first derivative of U∗
n (x) is given in the following corollary.

Corollary 1 [14] The first derivative of the shifted second kind Chebyshev polynomial is
given by

DU∗
n (x) = 4

n−1∑
k=0

(k+n) odd

(k + 1)U∗
k (x). (3)

Shifted Second Kind Chebyshev Wavelets

Wavelets constitute of a family of functions constructed from dilation and translation of
single function called the mother wavelet. When the dilation parameter a and the translation
parameter b vary continuously, then we have the following family of continuous wavelets:

ψa,b(t) = |a|−1/2ψ

(
t − b

a

)
a, b,∈ R , a �= 0. (4)

Second kind Chebyshev wavelets ψnm(t) = ψ(k, n,m, t) have four arguments where k, n
can assume any positive integer, m is the order of second kind Chebyshev polynomials, and
t is the normalized time. They are defined on the interval [0, 1] by:

ψnm(t) =

⎧⎪⎨
⎪⎩

2
k+3
2√
π

U∗
m

(
2k t − n

)
, t ∈

[
n
2k

, n+1
2k

]
,

0, otherwise,

, m = 0, 1, . . . , M, n = 0, 1, . . . , 2k − 1.

(5)

Function Approximation

A function f (t) defined over [0, 1] may be expanded in terms of second kind Chebyshev
wavelets as

f (t) =
∞∑
n=0

∞∑
m=0

cnm ψnm(t),

where

cnm = 〈 f (t), ψnm(t)〉ω = 8

π

∫ 1

0
ω(t) f (t) ψnm(t) dt, (6)

and w(t) = √
t − t2. If the infinite series is truncated, then f (t) can be approximated as

f (t) 

2k−1∑
n=0

M∑
m=0

cnm ψnm(t). (7)
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Convergence Analysis

We state a theorem ascertain that the second kind Chebyshev wavelet expansion of a function
f (x) in L2

w[0, 1], the space of square Lesbegue integrable functions, with bounded second
derivative, converges uniformly to f (x).

Theorem 2 [2] A function f (x) ∈ L2
ω[0, 1], with | f ′′(x)| � L , can be expanded as an

infinite sum of Chebyshev wavelets, and the series converges uniformly to f (x). Explicitly,
the expansion coefficients in (6) satisfies the following inequality

|cnm | <
8
√
2π L

(n + 1)
5
2 (m + 1)2

, ∀m > 1, n � 0. (8)

Solution of Systems of Integro-Differential Equations

In this section, we present a Chebyshev wavelets collocation method, namely, second-kind
Chebyshev wavelets collocation method (abbreviation) to numerically solve the following
Systems:

u′′′
i (x) = fi (x) + Fi (x, u1, u

′
1, u

′′
1, u2, u

′
2, u

′′
2, u3, u

′
3, u

′′
3)

+
∫ a

0
ki (x, t)Gi (u1(t), u

′
1(t), u

′′
1(t), u2(t), u

′
2(t), u

′′
2(t), u3(t), u

′
3(t), u

′′
3(t)) dt,

i = 1, 2, 3,
(9)

subject to the initial conditions

u(r)
i = air , r = 0, 1, 2, i = 1, 2, 3. (10)

Based on Eq. (7) we approximate ui , i = 1, 2, 3 in terms of S2CWCM as follows:

ui,k,M (x) =
2k−1∑
n=0

M∑
m=0

ci,n,m ψnm(x), i = 1, 2, 3, (11)

where air are known constants, x ∈ [0, 1], ki (x, t) ∈ L2([0, 1] × [0, 1]), i = 1, 2, 3 are the
kernels, fi (x), i = 1, 2, 3 are known functions, Fi , Gi , i = 1, 2, 3 are linear or nonlinear
functions, and u, v, w are unknown functions.it is known that at a = 1 the integro equation
called Fredholm Integro-Differential Equations while at a = x it called Volterra Integro-
Differential Equations.
Now we can define the residuals of the system (9) as follows:

Ri (x) =
2k−1∑
n=0

M∑
m=3

ci,n,mψ ′′′
nm(x) − fi (x)

+Fi

⎛
⎝x,

2k−1∑
n=0

M∑
m=0

c1,n,mψnm,

2k−1∑
n=0

M∑
m=1

c1,n,mψ ′
nm,

2k−1∑
n=0

M∑
m=2

c1,n,mψ ′′
nm,

2k−1∑
n=0

M∑
m=0

c2,n,mψnm,

2k−1∑
n=0

M∑
m=1

c2,n,mψ ′
nm,

2k−1∑
n=0

M∑
m=2

c2,n,mψ ′′
nm ,
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2k−1∑
n=0

M∑
m=0

c3,n,mψnm,

2k−1∑
n=0

M∑
m=1

c3,n,mψ ′
nm,

2k−1∑
n=0

M∑
m=2

c3,n,mψ ′′
nm

⎞
⎠

−
∫ a

0
ki (x, t)Gi

⎛
⎝2k−1∑

n=0

M∑
m=0

c1,n,mψnm,

2k−1∑
n=0

M∑
m=1

c1,n,mψ ′
nm,

2k−1∑
n=0

M∑
m=2

c1,n,mψ ′′
nm ,

2k−1∑
n=0

M∑
m=0

c2,n,mψnm,

2k−1∑
n=0

M∑
m=1

c2,n,mψ ′
nm,

2k−1∑
n=0

M∑
m=2

c2,n,mψ ′′
nm ,

2k−1∑
n=0

M∑
m=0

c3,n,mψnm,

2k−1∑
n=0

M∑
m=1

c3,n,mψ ′
nm,

2k−1∑
n=0

M∑
m=2

c3,n,mψ ′′
nm

⎞
⎠ dt, i=1, 2, 3.

(12)

Now we collocate (12) at xs the first 2k(M + 1) − 3 roots of Ũ2k (M+1)(x) to get

Ri (xs) = 0, i = 1, 2, 3, (13)

moreover the use of the initial conditions yields

2k−1∑
n=0

M∑
m=r

ci,n,mψ(r)
nm(0) = air , i = 1, 2, 3. (14)

Now Eqs. (13)–(14) generate a system of equations in the unknown expansion coefficients
ci,n,m which may be solved with the well-known Newton’s iterative methods.

Numerical Results and Discussions

In this section, the presented scheme given in “Solution of Systems of Integro-Differential
Equations” section is applied to solve linear and nonlinear systemof integro-differential equa-
tions. The efficiency and the applicability of the proposed scheme are illustrated by solving
some examples of Volterra and Fredholm integro-differential equations. All computations
are performed using Mathematica 9.

Example 1 [3] consider the following non-linear systemofVolterra integro-differential equa-
tions

u′′(x) = x + 2x3 + 2(v′(x))2 −
∫ x

0
((v′(t))2 + u(t)w′′(t)) dt

v′′(x) = −3x2 − xu(x) +
∫ x

0
(xtv′(t)u′′(t) + w′(t)) dt

w′′(x) = 2 − 4

3
x3 + (u′′(x))2 − 2u2(x) +

∫ x

0
(x2v(t) + (u′(t))2 + t3w′′(t)) dt

(15)

subject to the initial conditions

u(0) = 0, u′(0) = 0

v(0) = 0, v′(0) = 1

w(0) = 0, w′(0) = 0

(16)
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Table 1 Maximum absolute
error for Example 1 using the
proposed technique

k M E_u E_v E_w

2 5.55 × 10−17 2.78 × 10−17 4.16 × 10−17

0 3 5.60 × 10−17 2.97 × 10−17 4.51 × 10−16

4 1.22 × 10−16 3.55 × 10−17 6.68 × 10−16

Table 2 The comparison of
maximum absolute error between
the numerical solution using our
method and the solutions in [3]

Method in [3] S2CWCM with k = 0 and M = 4

1.23 × 10−9 6.68 × 10−16

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x

u(
x)

M=4
M=3
M=2
Exact

Fig. 1 The graph of the approximate solution u(x) for Example 1 with different values of M.

with the exact solution u(x) = x2, v(x) = x, w(x) = 3x2.We solved the system (15) using
the proposed technique S2CWCM. In Table 1, the maximum absolute errors, E_u, Ev, and
E_w, between exact and approximate solutions are listed for k = 0 and with various values
of M, while in Table 2 we have compared the obtained results using the proposed technique
with the obtained result in [3]. Moreover, Fig. 1 shows the approximate solution for u with
different values of M.

Example 2 Consider the following non-linear system of Volterra integro-differential equa-
tions

u′′′(x) = x − u′(x) −
∫ x

0
((u′′(t))2 + (v′′(t))2) dt

v′′′(x) = sin x + 1

2
(sin x)2 +

∫ x

0
(u′′(t)v(t)) dt

(17)

subject to the initial conditions

u(0) = 0, u′(0) = 1,

v(0) = 1, v′(0) = 0,
(18)

with the exact solution u(x) = sin x, v(x) = cos x . Table 3 shows the maximum absolute
errors, E_u and E_v, are listed for k = 0, 1 and with various values of M , while in Table 4
we have compared the obtained results using the proposed technique with the result obtained
in [3]. Figures 2 and 3 show the approximate solutions for u(x) and v(x) respectively with
various values of M.
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Table 3 Maximum absolute error for Example 2 using the proposed technique

k M E_u E_v k M E_u E_v

8 3.64 × 10−8 1.52 × 10−8 7 3.64 × 10−9 1.29 × 10−8

0 9 7.28 × 10−10 1.72 × 10−9 1 8 5.59 × 10−10 1.49 × 10−10

12 6.39 × 10−14 2.92 × 10−14 9 7.75 × 10−12 2.31 × 10−11

Table 4 The comparison of
maximum absolute error between
the numerical solution using our
method and the solutions in [3]

Method in [3] S2CWCM with k = 0 and M = 8

5.05 × 10−4 3.64 × 10−8

0.0 0.2 0.4 0.6 0.8 1.0
0.02

0.05

0.10

0.20

0.50

1.00

x

M=11
M=8
M=7
Exact

u(
x)

Fig. 2 The graph of the approximate solution u(x) for Example 2 with different values of M.

0.0 0.2 0.4 0.6 0.8 1.0

0.6

0.7

0.8

0.9

1.

x

M=7

M=6

M=5

Exact

u(
x)

Fig. 3 The graph of the approximate solution v(x) for Example 2 with different values of M

Example 3 [23] Consider the following linear system of Fredholm integro-differential equa-
tions

y′′ + x y′ − x y −
∫ 1

−1
e−t sin x y(t) dt = ex − 2 sin x (19)

subject to the conditions
y(0) = y′(0) = 1, −1 ≤ x ≤ 1 (20)

with the exact solution y(x) = ex . We convert Eq. (23) into a first order system of Fredholm
integro-differential equations. Table 5, show the maximum absolute error, E_y, between the
exact solution and the approximate solution obtained using the proposed technique S2CWCM
for k = 0 andwith various values ofM , while in Table 6 the obtained result using the proposed
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Table 5 Maximum absolute
error for Example 3 using the
proposed technique

k M E_y

4 6.342 × 10−4

0 9 2.553 × 10−9

13 1.455 × 10−13

Table 6 The comparison of
maximum absolute error between
the numerical solution using our
method and the solutions in [23]

Method in [23] S2CWCM with k = 0 and M = 10

2.546 × 10−9 4.600 × 10−10

− 1.0 − 0.5 0.5 1.0

2. × 10−14

4. × 10−14

6. × 10−14

8. × 10−14

1. × 10−13

1.2 × 10−13

1.4 × 10−13

Fig. 4 Data evaluated for the absolute errors with M = 13 for Example 3

technique is compared with the result obtained in [23]. Moreover, Fig. 4 reveals the absolute
errors with M = 13, using the proposed technique.

Example 4 [22] Consider the following non-linear system of Fredholm integro-differential
equations

y(4) − 2 y(2)
(

π2 +
∫ 1

0
y′2 dt

)
+ 4π4 sin(π x) = 0 (21)

subject to the conditions

y(0) = y′′(0) = y(1) = y′′(1) = 0, (22)

with the exact solution y(x) = − sin(π x). We convert Eq. (21) into a first order system
of Fredholm integro-differential equations. In Table 7, the maximum absolute error E_y is
listed for k = 0 and with different values of M , while in Table 8 we have compared the
results obtained by applying S2CWCM with the result obtained in [22]. Also, the absolute
errors with M = 16 using the proposed technique are plotted in Fig. 5.
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Table 7 Maximum absolute
error for Example 4 using the
proposed technique

k M E_y

6 1.525 × 10−4

0 10 4.125 × 10−8

16 1.315 × 10−13

Table 8 The comparison of
maximum absolute error between
the numerical solution using our
method and the solutions in [22]

Method in [22] S2CWCM with k = 0 and M = 12

4.168 × 10−10 9.552 × 10−11

0.2 0.4 0.6 0.8 1.0

2. × 10−14

4. × 10−14

6. × 10−14

8. × 10−14

1. × 10−13

Fig. 5 Data evaluated for the absolute errors with M = 16 for Example 4

Example 5 Consider the following linear system of Fredholm integro-differential equations

u′′(x) + v′(x) +
∫ 1

0
2xt (u(t) − 3v(t)) dt = 3x2 + 3

10
x + 8

v′′(x) + u′(x) +
∫ 1

0
3(2x + t2)(u(t) − 2v(t)) dt = 21x + 4

5

(23)

subject to the initial conditions

u(0) = 1, u′(0) = 0,

v(0) = −1, v′(0) = 2,
(24)

the exact solutions are u(x) = 3x2 + 1, v(x) = x3 + 2x − 1. The system (23) are solved
using S2CWCM in case of k = 0, and M = 3. After applying our technique, we get

c0,0 = 1.9375, c0,1 = 0.75, c0,2 = 0.1875, c0,3 = 0, (25)

d0,0 = 0.21875, d0,1 = 0.71875, d0,2 = 0.09375, d0,3 = 0.015625, (26)

by substituting these coefficients into Eq. (11) we get u(x) = 3x2+1 and v(x) = x3+2x−1
which are the exact solutions (Fig. 6). Figure 6 shows the approximate solution for u(x), with
various values of M .
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0.0 0.2 0.4 0.6 0.8 1.0
1.0

1.5

2.0

2.5

3.0

3.5

4.0

x

M=5
M=4
M=3
Exact

u(
x)

Fig. 6 The graph of the approximate solution u(x) for Example 5 with different values of M

Table 9 Maximum absolute error for Example 6 using the proposed technique

k M E_u E_v k M E_u E_v

9 6.06 × 10−11 2.02 × 10−10 8 1.40 × 10−9 4.80 × 10−9

0 10 2.01 × 10−12 7.54 × 10−12 1 9 6.06 × 10−11 2.02 × 10−10

11 7.04 × 10−14 2.51 × 10−13 10 5.83 × 10−11 5.41 × 10−11

Table 10 The comparison of
maximum absolute error between
the numerical solution using our
method and the solutions in [3]

Method in [3] S2CWCM with k = 1 and M = 9

5.05 × 10−4 4.80 × 10−9

Example 6 Consider the following non-linear system of Fredholm integro-differential equa-
tions

u′′(x) + 4v(x) +
∫ 1

0
2((x + t)u2(t) + (2x − t)v′(t)) dt = 4ex + 2ex − 2

15
x + 13

6

v′′(x) − 3u(x) + 1

2

∫ 1

0
((x − t)u′(t)V ′(t) − (x + t)v3(t)) dt

= ex − 3x2 + 7

6
x − 1

6
e3x − 1

9
e3 − e − 19

18
, 0 � x � 1

(27)

subject to the initial conditions

u(0) = 1, u′(0) = 0,

v(0) = 1, v′(0) = 1,
(28)

with the exact solution u(x) = x2 + 1, v(x) = ex . In Table 9, the maximum absolute error
is listed for k = 0, 1 and with various values of M , while in Table 10 we have compared
our results with the result obtained in [3]. Figure 7 shows the approximate solution for u(x),
with various values of M .

Remark 1 It is worthy noting here that the obtained numerical results in the previous solved
examples are very accurate, although the number of retained modes in the spectral expansion
is very few, and again the numerical results are comparing favorablywith the known analytical
solutions.
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0.0 0.2 0.4 0.6 0.8 1.0
1.0

1.2

1.4

1.6

1.8

2.0

x

M=11
M=10
M=9
Exact

u(
x)

Fig. 7 The graph of the approximate solution u(x) for Example 6 with different values of M

Concluding Remarks

In this paper, a new numerical scheme is presented to solve systems of integro-differential
equations. The derivation of this scheme is essentially based on constructing the shifted
second kind Chebyshev wavelets collocations methods. One of the main advantages of the
presented scheme is its availability for application on both linear and non linear systems of
integro-differential equations. Another advantage of the developed scheme is that, high accu-
rate approximate solutions are achieved using a few number of the second kind Chebyshev
wavelets. The obtained numerical results are comparing favorably with the analytical ones.
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